-
Research
-
Publications
-
All publications
-
Benner, SA
-
Biondi, E
-
Bradley, K
-
Chen, C
-
Hoshika, S
-
Karalkar, N
-
Kim, HJ
-
Kim, MJ
-
Laos, R
-
Leal, NA
-
Li, Y
-
Shaw, RW
-
Spacek, J
-
Yang, ZY
-
Yaren, O
-
People
-
Benner, Steven
-
Biondi, Elisa
-
Bradley, Kevin
-
Chen, Cen
-
Hoshika, Shuichi
-
Karalkar, Nilesh
-
Kim, Hyo-Joong
-
Kim, Myong-Jung
-
Laos, Roberto
-
Leal, Nicole
-
Li, Yubing
-
Shaw, Ryan
-
Spacek, Jan
-
Yang, Zunyi
-
Yaren, Ozlem
-
News and Events
-
Press Coverage
-
Our Foundation
|
Associate
Ozlem Yaren
Education
- B. Sc. in Chemistry, Koc University, Turkey (2004)
- M. Sc. in Materials Science, Universität Ulm, Germany (2006)
- Ph. D. in Chemistry and Molecular Sciences, Universität Bern, Switzerland (2011)
Research summary
My PhD research focused on the design and validation of a combinatorial assay that allows the rapid and parallel screening of novel potential heterocycles that might be incorporated into DNA, from a library of heterocyclic amines for expansion of the genetic alphabet. I also explored the use of diamonds as a solid phase support for immobilizing DNA and studied their interaction with variety of enzymes.
Currently, I research on the development of molecular biology tools to be used in in vitro selection of functional DNA molecules, including those that bind to targets (aptamers) and catalyze reactions, as well as polymerases that manipulate unnatural DNA molecules. I am also actively working on the development of new design strategies to create libraries of oligonucleotides made of non-standard nucleoside analogs using isothermal amplification techniques to select for aptamers or DNA or RNA catalyst that perform like proteins.
Now, I am in the process of developing low-cost diagnostics systems to detect and differentiate infectious agents, including respiratory diseases (e.g. MERS-coV), noroviruses, mosquito-borne viruses (e.g. Zika, chikungunya and dengue viruses), drug-resistant HIV strains and tick-borne diseases. This work led to diagnostics platforms to detect viral diseases at or near points of sampling.
A list of recent publications are listed below. For a more complete list, please see my publications on the NCBI website or Google Scholar.
Recent Publications
Ultra-rapid detection of SARS-CoV-2 in public workspace environments
Yaren, O., McCarter, J., Phadke, N., Bradley, K. M., Overton, B., Yang, Z., Ranade, S., Patil, K., Bangale, R., Benner, S. A.
PLOS One
, Public Library of Science (2021) 10.1371/journal.pone.0240524, DOI:10.1101/2020.09.29.20204131
<Abstract>
Managing the pandemic caused by SARS-CoV-2 requires new capabilities in testing, including the possibility of identifying, in minutes, infected individuals as they enter spaces where they must congregate in a functioning society, including workspaces, schools, points of entry, and commercial business establishments. Here, the only useful tests (a) require no sample transport, (b) require minimal sample manipulation, (c) can be performed by unlicensed individuals, (d) return results on the spot in much less than one hour, and (e) cost no more than a few dollars. The sensitivity need not be as high as normally required by the FDA for screening asymptomatic carriers (as few as 10 virions per sample), as these viral loads are almost certainly not high enough for an individual to present a risk for forward infection. This allows tests specifically useful for this pandemic to trade-off unneeded sensitivity for necessary speed, simplicity, and frugality. In some studies, it was shown that viral load that creates forward-infection risk may exceed 105 virions per milliliter, easily within the sensitivity of an RNA amplification architecture, but unattainable by antibody-based architectures that simply target viral antigens. Here, we describe such a test based on a displaceable probe loop amplification architecture.
Multiplexed isothermal amplification based diagnostic platform to detect Zika, chikungunya, and dengue-1.
Yaren, O., Alto, B. W., Bradley, K. M., Moussatche, P., Benner, S. A.
J. Vis. Exp.
, JoVE (2018) 133: e57051, DOI:10.3791/57051
<Abstract>
Zika, dengue, and chikungunya viruses are transmitted by mosquitoes, causing diseases with similar patient symptoms. However, they have different downstream patient-to-patient transmission potentials, and require very different patient treatments. Thus, recent Zika outbreaks make it urgent to develop tools that rapidly discriminate these viruses in patients and trapped mosquitoes, to select the correct patient treatment, and to understand and manage their epidemiology in real time. Unfortunately, current diagnostic tests, including those receiving 2016 emergency use authorizations and fast-track status, detect viral RNA by reverse transcription polymerase chain reaction (RT-PCR), which requires instrumentation, trained users, and considerable sample preparation. Thus, they must be sent to "approved" reference laboratories, requiring time. Indeed, in August 2016, the Center for Disease Control (CDC) was asking pregnant women who had been bitten by a mosquito and developed a Zika-indicating rash to wait an unacceptable 2 to 4 weeks before learning whether they were infected. We very much need tests that can be done on site, with few resources, and by trained but not necessarily licensed personnel. This video demonstrates an assay that meets these specifications, working with urine or serum (for patients) or crushed mosquito carcasses (for environmental surveillance), all without much sample preparation. Mosquito carcasses are captured on paper carrying quaternary ammonium groups (Q-paper) followed by ammonia treatment to manage biohazards. These are then directly, without RNA isolation, put into assay tubes containing freeze-dried reagents that need no chain of refrigeration. A modified form of reverse transcription loop-mediated isothermal amplification with target-specific fluorescently tagged displaceable probes produces readout, in 30 min, as a three-color fluorescence signal. This is visualized with a handheld, battery-powered device with an orange filter. Forward contamination is prevented with sealed tubes, and the use of thermolabile uracil DNA glycosylase (UDG) in the presence of dUTP in the amplification mixture.
Nucleoside analogs to manage sequence divergence in nucleic acid amplification and SNP detection.
Yang, Z., Kim, H.-J., Le, J., McLendon, C., Bradley, K.M., Kim, M.-S., Hutter, D., Hoshika, S., Yaren, O., Benner, S.A.
Nucl. Acids Res.
(2018) 46(12): 5902-10,DOI:10.1093/nar/gky392
<Abstract>
Described here are the synthesis, enzymology and some applications of a purine nucleoside analog (H) designed to have two tautomeric forms, one complementary to thymidine (T), the other complementary to cytidine (C). The performance of H is compared by various metrics to performances of other 'biversal' analogs that similarly rely on tautomerism to complement both pyrimidines. These include (i) the thermodynamic stability of duplexes that pair these biversals with various standard nucleotides, (ii) the ability of the biversals to support polymerase chain reaction (PCR), (iii) the ability of primers containing biversals to equally amplify targets having polymorphisms in the primer binding site, and (iv) the ability of ligation-based assays to exploit the biversals to detect medically relevant single nucleotide polymorphisms (SNPs) in sequences flanked by medically irrelevant polymorphisms. One advantage of H over the widely used inosine 'universal base' and 'mixed sequence' probes is seen in ligation-based assays to detect SNPs. The need to detect medically relevant SNPs within ambiguous sequences is especially important when probing RNA viruses, which rapidly mutate to create drug resistance, but also suffer neutral drift, the second obstructing simple methods to detect the first. Thus, H is being developed to detect variants of viruses that are rapidly mutating.
Point of sampling detection of Zika virus within a multiplexed kit capable of detecting dengue and chikungunya
Yaren, O., Alto, B.W., Gangodkar, P.V., Ranade, S.R., Patil, K.N., Bradley, K.M., Yang, Z., Phadke, N., Benner, S.A
BMC Infect. Dis.
, BioMed Central Ltd. (2017) 17(1):293, DOI:10.1186/s12879-017-2382-0
<Abstract>
Background: Zika, dengue, and chikungunya are three mosquito-borne viruses having overlapping transmission vectors. They cause diseases having similar symptoms in human patients, but requiring different immediate management steps. Therefore, rapid (< one hour) discrimination of these three viruses in patient samples and trapped mosquitoes is needed. The need for speed precludes any assay that requires complex up-front sample preparation, such as extraction of nucleic acids from the sample. Also precluded in robust point-of-sampling assays is downstream release of the amplicon mixture, as this risks contamination of future samples that will give false positives.
Methods: Procedures are reported that directly test urine and plasma (for patient diagnostics) or crushed mosquito carcasses (for environmental surveillance). Carcasses are captured on paper samples carrying quaternary ammonium groups (Q-paper), which may be directly introduced into the assay. To avoid the time and instrumentation requirements of PCR, the procedure uses loop-mediated isothermal amplification (LAMP). Downstream detection is done in sealed tubes, with dTTP-dUTP mixtures in the LAMP with a thermolabile uracil DNA glycosylase (UDG); this offers a second mechanism to prevent forward contamination. Reverse transcription LAMP (RT-LAMP) reagents are distributed dry without requiring a continuous chain of refrigeration.
Results: The tests detect viral RNA in unprocessed urine and other biological samples, distinguishing Zika, chikungunya, and dengue in urine and in mosquitoes infected with live Zika and chikungunya viruses. The limits of detection (LODs) are ~0.71 pfu equivalent viral RNAs for Zika, ~1.22 pfu equivalent viral RNAs for dengue, and ~38 copies of chikungunya viral RNA. A handheld, battery-powered device with an orange filter was constructed to visualize the output. Preliminary data showed that this architecture, working with pre-prepared tubes holding lyophilized reagent/enzyme mixtures and shipped without a chain of refrigeration, also worked with human plasma samples to detect chikungunya and dengue in Pune, India.
Conclusions: A kit, complete with a visualization device, is now available for point-of-sampling detection of Zika, chikungunya, and dengue. The assay output is read in ca. 30 min by visualizing (human eye) three-color coded fluorescence signals. Assay in dried format allows it to be run in low-resource environments.
Detection of chikungunya viral RNA in mosquito bodies on cationic (Q) paper based on innovations in synthetic biology
Glushakova, L.G., Alto, B.W., Kim, M.S., Bradley, A., Yaren, O., Benner, S.A.
J Virol Methods
, Elsevier (2017) 246:104-11, DOI:10.1016/j.jviromet.2017.04.013
<Abstract>
Chikungunya virus (CHIKV) represents a growing and global concern for public health that needs inexpensive and convenient methods to collect mosquitoes as potential carriers so that they can be preserved, stored and transported for later and/or remote analysis. Reported here is a cellulose-based paper, derivatized with quaternary ammonium groups ("Q-paper") that meets these needs. In a series of tests, infected mosquito bodies were squashed directly on Q-paper. Aqueous ammonia was then added on the mosquito bodies to release viral RNA that adsorbed on the cationic surface via electrostatic interactions. The samples were then stored (frozen) or transported. For analysis, the CHIKV nucleic acids were eluted from the Q-paper and PCR amplified in a workflow, previously developed, that also exploited two nucleic acid innovations, ("artificially expanded genetic information systems", AEGIS, and "self-avoiding molecular recognition systems", SAMRS). The amplicons were then analyzed by a Luminex hybridization assay. This procedure detected CHIKV RNA, if present, in each infected mosquito sample, but not in non-infected counterparts or ddH2O samples washes, with testing one week or ten months after sample collection.
Standard and AEGIS nicking molecular beacons detect amplicons from the Middle East respiratory syndrome coronavirus
Ozlem Yaren, Lyudmyla G. Glushakova, Kevin M. Bradley, Shuichi Hoshika,Steven A. Benner
J Virol Methods
(236) , Elsevier 54-61 (2016) doi:10.1016/j.jviromet.2016.07.008
<Abstract>
This paper combines two advances to detect MERS-CoV, the causative agent of Middle East Respiratory Syndrome, that have emerged over the past few years from the new field of "synthetic biology". Both are based on an older concept, where molecular beacons are used as the downstream detection of viral RNA in biological mixtures followed by reverse transcription PCR amplification. The first advance exploits the artificially expanded genetic information systems (AEGIS). AEGIS adds nucleotides to the four found in standard DNA and RNA (xNA); AEGIS nucleotides pair orthogonally to the A:T and G:C pairs. Placing AEGIS components in the stems of molecular beacons is shown to lower noise by preventing unwanted stem invasion by adventitious natural xNA. This should improve the signal-to-noise ratio of molecular beacons operating in complex biological mixtures. The second advance introduces a nicking enzyme that allows a single target molecule to activate more than one beacon, allowing "signal amplification". Combining these technologies in primers with components of a self-avoiding molecular recognition system (SAMRS), we detect 50 copies of MERS-CoV RNA in a multiplexed respiratory virus panel by generating fluorescence signal visible to human eye and/or camera.
A norovirus detection architecture based on isothermal amplification and expanded genetic systems
Ozlem Yaren, Kevin M. Bradley, Patricia Moussatche, Shuichi Hoshika, Zunyi Yang,Shu Zhu, Stephanie M. Karst, Steven A. Benner
J Virol Methods
(237) , Elsevier 64-71 (2016) doi: 10.1016/j.jviromet.2016.08.012
<Abstract>
Noroviruses are the major cause of global viral gastroenteritis with short incubation times and small inoculums required for infection. This creates a need for a rapid molecular test for norovirus for early diagnosis, in the hope of preventing the spread of the disease. Non-chemists generally use off-the shelf reagents and natural DNA to create such tests, suffering from background noise that comes from adventitious DNA and RNA (collectively xNA) that is abundant in real biological samples, especially feces, a common location for norovirus. Here, we create an assay that combines artificially expanded genetic information systems (AEGIS, which adds nucleotides to the four in standard xNA, pairing orthogonally to A:T and G:C) with loop-mediated isothermal amplification (LAMP) to amplify norovirus RNA at constant temperatures, without the power or instrument requirements of PCR cycling. This assay was then validated using feces contaminated with murine norovirus (MNV). Treating stool samples with ammonia extracts the MNV RNA, which is then amplified in an AEGIS-RT-LAMP where AEGIS segments are incorporated both into an internal LAMP primer and into a molecular beacon stem, the second lowering background signaling noise. This is coupled with RNase H nicking during sample amplification, allowing detection of as few as 10 copies of noroviral RNA in a stool sample, generating a fluorescent signal visible to human eye, all in a closed reaction vessel.
Restriction enzymes cleave DNA immobilized on micron-sized diamond crystallites
Yaren O, Benner SA
Diamond Relat. Mater.
, Elsevier (2015) 52, 18-24
<Abstract>
Because diamonds have strongly bonded networks of carbon atoms, they offer the potential to support DNA-targeted analysis in architectures that require very stable DNA immobilization with very low DNA leakage. Further, their non-porous structures should allow diamond-immobilized DNA to easily gain access to enzymes in bulk solution. As part of our work to develop a molecular biology tool kit to transform immobilized DNA, we asked whether diamond-immobilized DNA could be cleaved by sequence-specific restriction endonucleases, despite the large sizes of those enzymes, the potential for "steric" obstruction from the diamond surface, and the possibility that the diamond surface might inactivate those enzymes. We report here that both standard and "nicking" restriction endonucleases cut diamond-immobilized single-stranded DNA, after it forms a duplex with a complementary strand of DNA delivered from solution. As a somewhat surprising result, we also discovered that restriction enzymes could cleave a fraction of the immobilized duplex DNA even if the complementary strand came not from solution, but rather from a separate diamond crystallite. This cleavage did not result from a failure of the attachment linkage that allowed the diffusion of leaked DNA through bulk solvent. Rather, the cleavage required physical proximity between crystallites, as confirmed by transmission electron microscopy. These results add to the tools that can use diamond-immobilized DNA, as well as define practical constraints on assay architectures where diamond-immobilized DNA is presumed to be isolated from other diamond-immobilized DNA particles.
Synthesis and incorporation into oligodeoxynucleotides of carbocyclic exo-amino nucleosides
Yaren O, Rothlisberger P, Leumann CJ
Synthesis
, Thieme (2012) 7, 1011-1025
<Abstract>
The preparation of a series of carbocyclic exo-amino nucleosides from selected primary aromatic amines in both the C1' α- and β-epimeric form as well as the corresponding building blocks for DNA synthesis is described. These nucleosides were incorporated into oligodeoxynucleotides and their base-pairing properties with natural bases and, in part, with themselves investigated. The results obtained confirm that such nucleoside analogues engage in specific interactions with natural nucleotides in DNA duplexes. In addition they can form self-pairs that match or exceed the stability of Watson-Crick base-pairs. Thus, carbocyclic exo-amino nucleosides can be taken into consideration in the design of novel base-pairs for the extension of the genetic alphabet, or for other applications in biotechnology.
A Parallel Screen for the Discovery of Novel DNA Base Pairs
Yaren O, Mosimann M, Leumann CJ
Angew. Chem. Int. Ed.
(2011) 50, 1935-1938. PMID: 21328674
<Abstract>
A combinatorial assay was developed for screening a library of aromatic heterocyclic amines for their propensity to act as a complementary base Z in a DNA duplex. This assay may prove useful in speeding up the process of base-pair discovery for potential applications in biotechnology and synthetic biology.
(View publication page for Ozlem Yaren)
|
- Point-of-care diagnostics
- Isothermal amplification systems
- Directed evolution of polymerases
- Emulsion-based amplification platforms
|
|