-
Research
-
Publications
-
All publications
-
Benner, SA
-
Biondi, E
-
Bradley, K
-
Chen, C
-
Hoshika, S
-
Karalkar, N
-
Kim, HJ
-
Kim, MJ
-
Laos, R
-
Leal, NA
-
Li, Y
-
Richards, N
-
Shaw, RW
-
Spacek, J
-
Yang, ZY
-
People
-
Benner, Steven
-
Biondi, Elisa
-
Bradley, Kevin
-
Chen, Cen
-
Darling, April
-
Hoshika, Shuichi
-
Karalkar, Nilesh
-
Kim, Hyo-Joong
-
Kim, Myong-Jung
-
Laos, Roberto
-
Leal, Nicole
-
Li, Yubing
-
Richards, Nigel
-
Shaw, Ryan
-
Spacek, Jan
-
Yang, Zunyi
-
News and Events
-
Press Coverage
-
Our Foundation
|
Ryan Shaw's Publications
Expanded Genetic Alphabets. Managing Nucleotides that Lack Tautomeric, Protonated, or Deprotonated Versions Complementary to Natural Nucleotides
Winiger, C.B., Shaw, R.W., Kim, M.J., Moses, J.D., Matsuura, M.F. and Benner, S.A.
ACS Synthetic Biology, American Chemical Society (2017) 55(51):15816-20, DOI:10.1002/anie.201608001
<Abstract>
2,4-Diaminopyrimidine (trivially K) and imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione (trivially X) form a nucleobase pair with Watson-Crick geometry as part of an artificially expanded genetic information system (AEGIS). Neither K nor X can form a Watson-Crick pair with any natural nucleobase. Further, neither K nor X has an accessible tautomeric form or a protonated/deprotonated state that can form a Watson-Crick pair with any natural nucleobase. In vitro experiments show how DNA polymerase I from E. coli manages replication of DNA templates with one K:X pair, but fails with templates containing two adjacent K:X pairs. In analogous in vivo experiments, E. coli lacking dKTP/dXTP cannot rescue chloramphenicol resistance from a plasmid containing two adjacent K:X pairs. These studies identify bacteria able to serve as selection environments for engineering cells that replicate AEGIS pairs that lack forms that are Watson-Crick complementary to any natural nucleobase.
Biological phosphorylation of an Unnatural Base Pair (UBP) using a Drosophila melanogaster deoxynucleoside kinase (DmdNK) mutant.
Chen, F., Zhang, Y., Daugherty, A.B., Yang, Z.Y., Shaw, R., Dong, M.X., Lutz, S. and Benner, S.A.
PLOS One, Public Library of Science (2017) 12(3): e0174163, DOI:10.1371/journal.pone.0174163
<Abstract>
One research goal for unnatural base pair (UBP) is to replicate, transcribe and translate them in vivo. Accordingly, the corresponding unnatural nucleoside triphosphates must be available at sufficient concentrations within the cell. To achieve this goal, the unnatural nucleoside analogues must be phosphorylated to the corresponding nucleoside triphosphates by a cascade of three kinases. The first step is the monophosphorylation of unnatural deoxynucleoside catalyzed by deoxynucleoside kinases (dNK), which is generally considered the rate limiting step because of the high specificity of dNKs. Here, we applied a Drosophila melanogaster deoxyribonucleoside kinase (DmdNK) to the phosphorylation of an UBP (a pyrimidine analogue (6-amino-5-nitro-3-(1'-b-d-2'-deoxyribofuranosyl)-2(1H)-pyridone, Z) and its complementary purine analogue (2-amino-8-(1'-b-d-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one, P). The results showed that DmdNK could efficiently phosphorylate only the dP nucleoside. To improve the catalytic efficiency, a DmdNK-Q81E mutant was created based on rational design and structural analyses. This mutant could efficiently phosphorylate both dZ and dP nucleoside. Structural modeling indicated that the increased efficiency of dZ phosphorylation by the DmdNK-Q81E mutant might be related to the three additional hydrogen bonds formed between E81 and the dZ base. Overall, this study provides a groundwork for the biological phosphorylation and synthesis of unnatural base pair in vivo.
Assays To Detect the Formation of Triphosphates of Unnatural
Nucleotides: Application to Escherichia coli Nucleoside Diphosphate
Kinase
Mariko F. Matsuura, Ryan W. Shaw, Jennifer D. Moses, Hyo-Joong Kim, Myong-Jung Kim, Myong-Sang Kim, Shuichi Hoshika, Nilesh Karalkar, and Steven A. Benner
ACS Synthetic Biology, American Chemical Society (2016) 5 (3), pp 234-240 DOI: 10.1021/acssynbio.5b00172
<Abstract>
One frontier in synthetic biology seeks to move artificially
expanded genetic information systems (AEGIS) into natural living cells and to
arrange the metabolism of those cells to allow them to replicate plasmids built
from these unnatural genetic systems. In addition to requiring polymerases that
replicate AEGIS oligonucleotides, such cells require metabolic pathways that
biosynthesize the triphosphates of AEGIS nucleosides, the substrates for those
polymerases. Such pathways generally require nucleoside and nucleotide kinases
to phosphorylate AEGIS nucleosides and nucleotides on the path to these
triphosphates. Thus, constructing such pathways focuses on engineering natural
nucleoside and nucleotide kinases, which often do not accept the unnatural
AEGIS biosynthetic intermediates. This, in turn, requires assays that allow the
enzyme engineer to follow the kinase reaction, assays that are easily confused by
ATPase and other spurious activities that might arise through "site-directed
damage" of the natural kinases being engineered. This article introduces three assays that can detect the formation of both natural
and unnatural deoxyribonucleoside triphosphates, assessing their value as polymerase substrates at the same time as monitoring
the progress of kinase engineering. Here, we focus on two complementary AEGIS nucleoside diphosphates, 6-amino-5-nitro-3-
(1'-B-D-2'-deoxyribofuranosyl)-2(1H)-pyridone and 2-amino-8-(1'-B-D-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-
4(8H)-one. These assays provide new ways to detect the formation of unnatural deoxyribonucleoside triphosphates in vitro
and to confirm their incorporation into DNA. Thus, these assays can be used with other unnatural nucleotides.
Alternative Watson-Crick Synthetic
Genetic Systems
Steven A. Benner, Nilesh B. Karalkar, Shuichi Hoshika, Roberto Laos, Ryan W. Shaw, Mariko Matsuura, Diego Fajardo, and Patricia Moussatche
Cold Spring Harb Perspect Biol, Cold Spring Harbor Laboratory Press (2016) doi: 10.1101/cshperspect.a023770
<Abstract>
In its "grand challenge" format in chemistry, "synthesis" as an activity sets out a goal that is
substantially beyond current theoretical and technological capabilities. In pursuit of this
goal, scientists are forced across uncharted territory, where they must answer unscripted
questions and solve unscripted problems, creating new theories and new technologies in
ways that would not be created by hypothesis-directed research. Thus, synthesis drives discovery
and paradigm changes in ways that analysis cannot. Described here are the products
that have arisen so far through the pursuit of one grand challenge in synthetic biology:
Recreate the genetics, catalysis, evolution, and adaptation that we value in life, but using
genetic and catalytic biopolymers different from those that have been delivered to us by
natural history on Earth. The outcomes in technology include new diagnostic tools that have
helped personalize the care of hundreds of thousands of patients worldwide. In science, the
effort has generated a fundamentally different view of DNA, RNA, and how they work.
Polymerase Interactions with Wobble Mismatches in Synthetic
Genetic Systems and Their Evolutionary Implications
Christian B. Winiger, Myong-Jung Kim, Shuichi Hoshika, Ryan W. Shaw, Jennifer D. Moses, Mariko F. Matsuura, Dietlind L. Gerloff, and Steven A. Benner
Biochemistry55(28), ACS 3847-3850 (2016) DOI: 10.1021/acs.biochem.6b00533
<Abstract>
In addition to completing the Watson-Crick nucleobase matching "concept" (big pairs with small,
hydrogen bond donors pair with hydrogen bond acceptors),
artificially expanded genetic information systems
(AEGIS) also challenge DNA polymerases with a
complete set of mismatches, including wobble mismatches.
Here, we explore wobble mismatches with AEGIS with
DNA polymerase 1 from Escherichia coli. Remarkably, we
find that the polymerase tolerates an AEGIS:standard
wobble that has the same geometry as the G:T wobble that
polymerases have evolved to exclude but excludes a wobble
geometry that polymerases have never encountered in
natural history. These results suggest certain limits to "structural analogy" and "evolutionary guidance" as tools
to help synthetic biologists expand DNA alphabets.
A Single Deoxynucleoside Kinase Variant from Drosophila
melanogaster Synthesizes Monophosphates of Nucleosides That Are
Components of an Expanded Genetic System
Mariko F. Matsuura, Christian B. Winiger, Ryan W. Shaw, Myong-Jung Kim, Myong-Sang Kim, Ashley B. Daugherty, Fei Chen, Patricia Moussatche, Jennifer D. Moses, Stefan Lutz, and Steven A. Benner
ACS Synthetic Biology, American Chemical Society (2016) DOI: 10.1021/acssynbio.6b00228
<Abstract>
ABSTRACT: Deoxynucleoside kinase from D. melanogaster (DmdNK) has broad specificity; although it catalyzes the phosphorylation of natural pyrimidine more efficiently than natural purine nucleosides, it accepts all four 2'-deoxynucleosides and many analogues, using ATP as a phosphate donor to give the corresponding deoxynucleoside monophosphates. Here, we show that replacing a single amino acid (glutamine 81 by glutamate) in DmdNK creates a variant that also catalyzes the phosphorylation of nucleosides that form part of
an artificially expanded genetic information system (AEGIS). By shuffling hydrogen bonding groups on the nucleobases, AEGIS adds potentially as many as four additional nucleobase pairs to the genetic "alphabet". Specifically, we show that DmdNK Q81E creates the monophosphates from the AEGIS nucleosides dP, dZ, dX, and dK (respectively 2-amino-8-(1'-β-D-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one, dP; 6-amino-3-(1'-β-D-2'-deoxyribofuranosyl)-5-nitro-1H-pyridin-2-one, dZ; 8-(1'β-D-2'-deoxy-ribofuranosyl)imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione, dX; and 2,4-diamino-5-(1'-β-D-2'-deoxyribofuranosyl)-pyrimidine, dK). Using a coupled enzyme assay, in vitro kinetic parameters were obtained for three of these nucleosides (dP, dX, and dK; the UV absorbance of dZ made it impossible to get its precise kinetic parameters). Thus, DmdNK Q81E appears to be a suitable enzyme to catalyze the first step in the biosynthesis of AEGIS 2'-deoxynucleoside triphosphates in vitro and, perhaps, in vivo, in a cell able to manage plasmids containing AEGIS DNA.
Directed Evolution of Polymerases To Accept Nucleotides with Nonstandard Hydrogen Bond Patterns
Laos R, Shaw R, Leal NA, Gaucher E, Benner S.
Biochemistry, ACS (2013) 52, 5288-5294
<Abstract>
Artificial genetic systems have been developed
by synthetic biologists over the past two decades to include
additional nucleotides that form additional nucleobase pairs
independent of the standard T:A and C:G pairs. Their use in
various tools to detect and analyze DNA and RNA requires
polymerases that synthesize duplex DNA containing unnatural
base pairs. This is especially true for nested polymerase chain
reaction (PCR), which has been shown to dramatically lower noise in multiplexed nested PCR if nonstandard nucleotides are
used in their external primers. We report here the results of a directed evolution experiment seeking variants of Taq DNA
polymerase that can support the nested PCR amplification with external primers containing two particular nonstandard
nucleotides, 2-amino-8-(1'-B-D-2'-deoxyribofuranosyl)imidazo[1,2-a]-1,3,5-triazin-4(8H)-one (trivially called P) that pairs with
6-amino-5-nitro-3-(1'-B-D-2'-deoxyribofuranosyl)-2(1H)-pyridone (trivially called Z). Variants emerging from the directed
evolution experiments were shown to pause less when challenged in vitro to incorporate dZTP opposite P in a template.
Interestingly, several sites involved in the adaptation of Taq polymerases in the laboratory were also found to have displayed
"heterotachy" (different rates of change) in their natural history, suggesting that these sites were involved in an adaptive change
in natural polymerase evolution. Also remarkably, the polymerases evolved to be less able to incorporate dPTP opposite Z in the
template, something that was not selected. In addition to being useful in certain assay architectures, this result underscores the
general rule in directed evolution that "you get what you select for".
Contribution of a conserved phenylalanine residue to the activity of Escherichia coli uracil DNA glycosylase
Shaw, RW; Feller, JA; Bloom, LB
DNA Repair3(10) 1273-1283 (2004)
<Abstract>
Uracil DNA glycosylase (UDG) excises uracil from DNA to initiate repair of this lesion. This important DNA repair enzyme is conserved in viruses, bacteria, and eukaryotes. One residue that is conserved among all the members of the UDG family is a phenylalanine that stacks with uracil when it is flipped out of the DNA helix into the enzyme active site. To determine what contribution this conserved Phe residue makes to the activity of UDG, Phe-77 in the Escherichia coli enzyme was mutated to three different amino acid residues, alanine (UDG-F77A), asparagine (UDG-F77N), and tyrosine (UDG-F77Y). The effects of these mutations were measured on the steady-state and pre-steady-state kinetics of uracil excision in addition to enzyme-DNA binding kinetics. The overall excision activity of each of the mutants was reduced relative to the wild-type enzyme; however, each mutation gave rise to a different kinetic phenotype with different effects on substrate binding and catalysis. The excision activity of UDG-F77N was the most severely compromised, but this enzyme still bound to uracil-containing DNA at about the same rate as wild-type UDG. In contrast, the decrease in the excision activity of UDG-F77A is likely to reflect a greater reduction in uracil-DNA binding than in the catalytic step. Overall, the effects of the mutations on catalysis are best correlated with the polarity of the substituted residue such that an increase in polarity decreases the efficiency of uracil excision. (C) 2004 Elsevier B.V. All rights reserved.
|
|
|